Nonlinear Solid Mechanics
Aims and Scope of the Series

The fundamental questions arising in mechanics are: Why?, How?, and How much? The aim of this series is to provide lucid accounts written by authoritative researchers giving vision and insight in answering these questions on the subject of mechanics as it relates to solids.

The scope of the series covers the entire spectrum of solid mechanics. Thus it includes the foundation of mechanics; variational formulations; computational mechanics; statics, kinematics and dynamics of rigid and elastic bodies; vibrations of solids and structures; dynamical systems and chaos; the theories of elasticity, plasticity and viscoelasticity; composite materials; rods, beams, shells and membranes; structural control and stability; soils, rocks and geomechanics; fracture; tribology; experimental mechanics; biomechanics and machine design.

The median level of presentation is the first year graduate student. Some texts are monographs defining the current state of the field; others are accessible to final year undergraduates; but essentially the emphasis is on readability and clarity.
Adnan Ibrahimbegovic

Nonlinear Solid Mechanics

Theoretical Formulations and Finite Element Solution Methods

Springer
This is a translation from the French book, *Mécanique non linéaire des solides déformables : formulation théorique et résolution numérique par éléments finis*, published by Hermes Science - Lavoisier Paris in 2006, which was nominated for the Roberval Award for University Textbooks in French.
To my family
It is with great pleasure that I accepted invitation of Adnan Ibrahimbegovic to write this preface, for this invitation gave me the privilege to be one of the first to read his book and allowed me to once again emphasize the importance for our discipline of solid mechanics, which is currently under considerable development, to produce the reference books suitable for students and all other researchers and engineers who wish to advance their knowledge on the subject.

The solid mechanics has closely followed the progress in computer science and is currently undergoing a true revolution where the numerical modelling and simulations are playing the central role. In the industrial environment, the ‘virtual’ (or the computing science) is present everywhere in the design and engineering procedures. I have a habit of saying that the solid mechanics has become the science of modelling and in that respect expanded beyond its traditional frontiers. Several facets of current developments have already been treated in different works published within the series ‘Studies in mechanics of materials and structures’; for example, modelling heterogeneous materials (Besson et al.), fracture mechanics (Leblond), computational strategies and namely LATIN method (Ladevèze), instability problems (NQ Son) and verification of finite element method (Ladevèze-Pelle). To these (French) books, one should also add the work of Lemaitre-Chaboche on nonlinear behavior of solid materials and of Batoz on finite element method.

The book of Adnan Ibrahimbegovic also deals with nonlinear solid mechanics, but with the unique approach of the author: each question is examined from all different facets pertaining to either mechanics, mathematics or computations with a special attention to the finite element methods. It is the main strength of this book to provide as complete as possible answer to each question. Such an exhaustive approach is also characteristic of list of different topics studied that count among them some of the main difficulties of modern mechanics: damage theory, localization and failure, discrete models, multi-physics, multi-scale, parallelism etc. Only omission are the issues of verification and validation, which are just mentioned. Quite naturally, this work
is marked by the author’s research, demonstrating a thorough understanding of the modern mechanics and a number of essential personal contributions. Collecting in a single book such a broad knowledge and know-how led inevitably to restructuring the presentation of the nonlinear solid mechanics and merging successfully the European and North-American schools, for the greatest benefits of readers. Even if all points of view presented in the book will not necessarily be shared by everybody, together they provide an unusually illuminating and lively image of the subject.

Cachan, August 2006

Pierre LADEVEZE
Professor at Ecole Normale Supérieure de Cachan
EADS Foundation Chair ‘Advanced Computational Structural Methods’

Professor Adnan Ibrahimbegovic belongs to a select group of active researchers and developers of the ‘finite element method technology’ applied to solving the nonlinear problems in mechanics of solids and structures with complex constitutive behavior under static and dynamic loading; the latter includes a wide spectrum that spans from theoretical modelling to validation tests and passing through all numerical implementation aspects. If this kind of developments have been more numerous in eighties and nineties, they have become more rare in 2006 because of the maturity that the discipline has reached as the result of research works of a very active international community of computational mechanics (which is organized within the International Association of Computational Mechanics), with this author as its active and established member, as well as the presence of fairly complete and efficient commercial software packages. Nevertheless, there still exist significant needs for improvement, not only in terms of theoretical formulations (variational formulations) and numerical implementation (choice of discrete models and consistent approximations), but also in terms of solution technics of discretized problems, which are nowadays highly nonlinear and non-stationary with different coupling conditions, and without forgetting the programming aspects since the final development stage is inevitably the corresponding software product.

The book ‘Nonlinear solid mechanics: Theoretical formulations and finite element solution methods’ reflects the rich international teaching experience to master and doctoral students, as well as the joint collaborative research with a number of renown institutions in Europe and North-America (University of California at Berkeley, Swiss Federal Institute of Technology in Lausanne, Compiègne University of Technology in France, Laval University in Quebec, Ecole Normale Supérieure in Cachan, University of Ljubljana, Technical University of Braunschweig). With this detailed and original work, Adnan Ibrahimbegovic offers to master and doctoral students, and also to
researchers and to computational software developers, the results and compilation of a number of research works.
This book deals with the analysis of deformable solids accounting for:
- Nonlinear elastic constitutive behavior, plasticity and viscoplasticity with damage, both for small and large deformations
- Contact conditions between deformable solids and the presence of inertia terms.
The theoretical and numerical aspects are pertinent to:
- Hu-Washizu variational principles and associated mixed finite element approximations and incompatible mode elements
- Time-integration schemes for inelastic constitutive models and nonlinear dynamics
- Thermomechanical coupling (also for elastoplasticity) and micro–macro approach
- Geometric and material instabilities.
We can think that the author will eventually publish one more book, dealing with structural mechanics models of rods, plates and shells, given his numerous contributions in that domain.
I wish that the present book meets the success equal to the international reputation of the author.

Compiègne, September 2006

Jean-Louis BATOZ
Professor at Compiègne University of Technology
Preface

The roots of this book go back to my doctoral studies at the University of California at Berkeley, from 1986 to 1989, funded by a Fulbright Grant. The UC Berkeley in general, and Structural Engineering, Mechanics and Materials Division in particular, provided an excellent study and research environment, with the opportunities to exchange the ideas with some extraordinary talented people from all over the world. Subsequently, I had a good fortune to stay on for another couple of years as a post-doc with my Berkeley mentors, Professor Edward L. Wilson and Professor Robert L. Taylor, which allowed me to explore a very wide variety of topics. The same good fortune was my subsequent research appointment at the Swiss Federal Institute of Technology in Lausanne at Structural and Continuum Mechanics Laboratory, directed by Professor François Frey, who granted me complete freedom to carry on with further explorations.

The work on the book started in 1994 with my first Professor appointment in France at the Compiègne University of Technology, continued from 1999 at the Ecole Normale Supérieure of Cachan in France, and kept gradually evolving as the result of a very fruitful interaction with graduate and undergraduate students, my doctoral students and colleagues of both faculties, in Cachan and in Compiègne. The final contents of the book was finally decided while preparing the IPSI course on Computational Solid and Structural Mechanics, which was taught several times in France, and more recently in Germany and in Italy, together with my colleague Robert L. Taylor, Professor at the University of California at Berkeley, to the audience of engineers coming from a number of prominent European companies, university teachers, researchers and graduate students. The first part of my sabbatical leave from ENS-Cachan in 2005 allowed me to finally converge with this long project. The work on French version of the book [115], which was published in 2006 within the collection of graduate textbooks in mechanics edited by Professor Paul Germain and Professor Pierre Ladevèze, was completed during my stay at the Swiss Federal Institute of Technology in Lausanne, as well as the subsequent stay at the University of Ljubljana, Slovenia. The work on
the present English version of the book started during the second leg of my
sabbatical leave that I spent at the Technical University of Braunschweig,
Germany, which was made possible by the financial support of the Alexander
von Humboldt Foundation through the Research Award in Technical Me-
chanics for scientists with internationally recognized qualifications.

Cachan, August 2008

Adnan Ibrahimbegovic
Professor at Ecole Normale Supérieure de Cachan
Acknowledgements

The funding for visiting professors at the Swiss Federal Institute of Technology in Lausanne, NATO fellowship for stay at the University of Ljubljana in Slovenia, and Humboldt Award with TU Braunschweig as my host institution, as well as the kind hospitality of my colleagues, Professor François Frey, Professor Bostjan Brank and Professor Hermann G. Matthies, are hereby gratefully acknowledged.

I would like to thank in particular all those who contributed to improving the book contents, either by generously supplying the results for a number of illustrative numerical simulations, or by participating in what seemed as never ending task of proofreading: some of my former doctoral students, Delphine Brancherie, Jean-Baptiste Colliat, Damijan Markovic, Norberto Dominguez, Guillaume Hervé, Lotfi Chorfi, Said Mamouri, Mazen Almikdad and Fadi Gharzeddine, and my colleagues, Catherine Knopf-Lenoir-Vayssade, Pierre Villon, François Frey, Blaise Rebora, Luc Davenne and Germaine Néfussi. Some of my present doctoral students have also contributed to this English edition, among them: Anna Kucerova, Sergiy Melnyk, Martin Hautefeuille, Amor Boulkertous, Christophe Kassiotis and Pierre Jehel. Thanks are also due to my senior colleagues, Professor Pierre Ladevèze and Professor Jean-Louis Batoz, for kindly accepting to prepare the preface for the French edition of the book, which I took the liberty to translate into English.

Last but not least, I thank my spouse Nita Ibrahimbegovic for her precious support.
Contents

Foreword

vi

Preface

xii

Acknowledgements

xiii

1 Introduction

1.1 Motivation and objectives .. 1
1.2 Outline of the main topics .. 7
1.3 Further studies recommendations 14
1.4 Summary of main notations 16

2 Boundary value problem in linear and nonlinear elasticity

2.1 Boundary value problem in elasticity with small displacement gradients .. 22
2.1.1 Domain and boundary conditions 22
2.1.2 Strong form of boundary value problem in 1D elasticity 24
2.1.3 Weak form of boundary value problem in 1D elasticity and the principle of virtual work 28
2.1.4 Variational formulation of boundary value problem in 1D elasticity and principle of minimum potential energy .. 31

2.2 Finite element solution of boundary value problems in 1D linear and nonlinear elasticity 35
2.2.1 Qualitative methods of functional analysis for solution existence and uniqueness 35
2.2.2 Approximate solution construction by Galerkin, Ritz and finite element methods 39
2.2.3 Approximation error and convergence of finite element method ... 45
2.2.4 Solving a system of linear algebraic equations by Gauss elimination method 50
2.2.5 Solving a system of nonlinear algebraic equations by incremental analysis ... 55
2.2.6 Solving a system of nonlinear algebraic equations by Newton’s iterative method 59
2.3 Implementation of finite element method in 1D boundary value problems ... 65
2.3.1 Local or elementary description ... 65
2.3.2 Consistence of finite element approximation 69
2.3.3 Equivalent nodal external load vector .. 70
2.3.4 Higher order finite elements ... 71
2.3.5 Role of numerical integration ... 73
2.3.6 Finite element assembly procedure ... 77
2.4 Boundary value problems in 2D and 3D elasticity .. 79
2.4.1 Tensor, index and matrix notations .. 79
2.4.2 Strong form of a boundary value problem in 2D and 3D elasticity 89
2.4.3 Weak form of boundary value problem in 2D and 3D elasticity 98
2.5 Detailed aspects of the finite element method .. 101
2.5.1 Isoparametric finite elements ... 101
2.5.2 Order of numerical integration ... 107
2.5.3 The patch test ... 109
2.5.4 Hu-Washizu (mixed) variational principle and method of incompatible modes 111
2.5.5 Hu-Washizu (mixed) variational principle and assumed strain method for quasi-incompressible behavior .. 120

3 Inelastic behavior at small strains .. 125
3.1 Boundary value problem in thermomechanics .. 127
3.1.1 Rigid conductor and heat equation .. 127
3.1.2 Numerical solution by time-integration scheme for heat transfer problem 134
3.1.3 Thermomechanical coupling in elasticity .. 142
3.1.4 Thermodynamics potentials in elasticity .. 146
3.1.5 Thermodynamics of inelastic behavior: constitutive models with internal variables 148
3.1.6 Internal variables in viscoelasticity .. 152
3.1.7 Internal variables in viscoplasticity .. 154
3.2 1D models of perfect plasticity and plasticity with hardening .. 156
3.2.1 1D perfect plasticity .. 156
3.2.2 1D plasticity with isotropic hardening .. 161
3.2.3 Boundary value problem for 1D plasticity .. 165
3.3 3D plasticity .. 181
 3.3.1 Standard format of 3D plasticity model:
 Prandtl-Reuss equations 181
 3.3.2 J2 plasticity model with von Mises plasticity criterion . 186
 3.3.3 Implicit backward Euler scheme and operator split
 for von Mises plasticity 188
 3.3.4 Finite element numerical implementation
 in 3D plasticity .. 193

3.4 Refined models of 3D plasticity 199
 3.4.1 Nonlinear isotropic hardening 199
 3.4.2 Kinematic hardening 201
 3.4.3 Plasticity model dependent on rate of deformation
 or viscoplasticity 205
 3.4.4 Multi-surface plasticity criterion 210
 3.4.5 Plasticity model with nonlinear elastic response 217

3.5 Damage models .. 222
 3.5.1 1D damage model 222
 3.5.2 3D damage model 228
 3.5.3 Refinements of 3D damage model 231
 3.5.4 Isotropic damage model of Kachanov 231
 3.5.5 Numerical examples: damage model combining
 isotropic and multisurface criteria 235

3.6 Coupled plasticity-damage model 238
 3.6.1 Theoretical formulation of 3D coupled model 238
 3.6.2 Time integration of stress for coupled
 plasticity-damage model 242
 3.6.3 Direct stress interpolation for coupled
 plasticity-damage model 250

4 Large displacements and deformations 257
 4.1 Kinematics of large displacements 259
 4.1.1 Motion in large displacements 259
 4.1.2 Deformation gradient 263
 4.1.3 Large deformation measures 268
 4.2 Equilibrium equations in large displacements 272
 4.2.1 Strong form of equilibrium equations 273
 4.2.2 Weak form of equilibrium equations 276
 4.3 Linear elastic behavior in large displacements:
 Saint-Venant–Kirchhoff material model 281
 4.3.1 Weak form of Saint-Venant–Kirchhoff 3D elasticity
 model and its consistent linearization 287
 4.4 Numerical implementation of finite element method in large
 displacements elasticity 289
 4.4.1 1D boundary value problem: elastic bar in large
 displacements .. 290
 4.4.2 2D plane elastic membrane in large displacements ... 296
4.5 Spatial description of elasticity in large displacements 299
 4.5.1 Finite element approximation of spatial description of elasticity in large displacements 306
4.6 Mixed variational formulation in large displacements and discrete approximations 308
 4.6.1 Mixed Hu-Washizu variational principle in large displacements and method of incompatible modes 308
 4.6.2 Mixed Hu-Washizu variational principle in large displacements and assumed strain methods for quasi-incompressible behavior 315
4.7 Constitutive models for large strains 321
 4.7.1 Invariance restrictions on elastic response 321
 4.7.2 Constitutive laws for large deformations in terms of principal stretches 327
4.8 Plasticity and viscoplasticity for large deformations 337
 4.8.1 Multiplicative decomposition of deformation gradient . 337
 4.8.2 Perfect plasticity for large deformations 340
 4.8.3 Isotropic and kinematic hardening in large deformation plasticity 347
 4.8.4 Spatial description of large deformation plasticity 350
 4.8.5 Numerical implementation of large deformation plasticity 352
5 Changing boundary conditions: contact problems 361
5.1 Unilateral 1D contact problem 362
 5.1.1 Strong form of 1D elasticity in presence of unilateral contact constraint 363
 5.1.2 Weak form of unilateral 1D contact problem and its finite element solution 365
5.2 Contact problems in 2D and 3D 375
 5.2.1 Contact between two deformable bodies in 2D case 379
 5.2.2 Mortar element method for contact 384
 5.2.3 Numerical examples of contact problems 389
 5.2.4 Refinement of contact model 390
6 Dynamics and time-integration schemes 393
6.1 Initial boundary value problem 394
 6.1.1 Strong form of elastodynamics 394
 6.1.2 Weak form of equations of motion 396
 6.1.3 Finite element approximation for mass matrix 399
6.2 Time-integration schemes 402
 6.2.1 Central difference (explicit) scheme 403
 6.2.2 Trapezoidal rule or average acceleration (implicit) scheme 407
 6.2.3 Mid-point (implicit) scheme and its modifications for energy conservation and energy dissipation 411
6.3 Mid-point (implicit) scheme for finite deformation plasticity . 417
6.4 Contact problem and time-integration schemes 420
 6.4.1 Mid-point (implicit) scheme for contact problem
 in dynamics .. 420
 6.4.2 Central difference (explicit) scheme and impact
 problem .. 423

7 Thermodynamics and solution methods for coupled
 problems .. 427
 7.1 Thermodynamics of reversible processes 428
 7.1.1 Thermodynamical coupling in 1D elasticity 428
 7.1.2 Thermodynamics coupling in 3D elasticity
 and constitutive relations 433
 7.2 Initial-boundary value problem in thermoelasticity
 and operator split solution method 437
 7.2.1 Weak form of initial-boundary value problem in 3D
 elasticity and its discrete approximation 437
 7.2.2 Operator split solution method for 3D thermoelasticity 444
 7.2.3 Numerical examples in thermoelasticity 448
 7.3 Thermodynamics of irreversible processes 452
 7.3.1 Thermodynamics coupling for 1D plasticity 453
 7.3.2 Thermodynamics coupling in 3D plasticity 458
 7.3.3 Operator split solution method for 3D
 thermoplasticity 462
 7.3.4 Numerical example: thermodynamics coupling in 3D
 plasticity .. 466
 7.4 Thermomechanical coupling in contact 469

8 Geometric and material instabilities 475
 8.1 Geometric instabilities 476
 8.1.1 Buckling, nonlinear instability and detection criteria . 476
 8.1.2 Solution methods for boundary value problem
 in presence of instabilities 483
 8.2 Material instabilities 489
 8.2.1 Detection criteria for material instabilities 491
 8.2.2 Illustration of finite element mesh lack of objectivity
 for localization problems 497
 8.3 Localization limiters 499
 8.3.1 List of localization limiters 499
 8.3.2 Localization limiter based on mesh-dependent
 softening modulus – 1D case 501
 8.3.3 Localization limiter based on viscoplastic
 regularization – 1D case 503
 8.3.4 Localization limiter based on displacement
 or deformation discontinuity – 1D case 506
8.4 Localization limiter in plasticity for massive structure
8.4.1 Theoretical formulation of limiter with displacement discontinuity – 2D/3D case
8.4.2 Numerical implementation within framework of incompatible mode method
8.4.3 Numerical examples for localization problems
8.5 Localization problem in large strain plasticity

9 Multi-scale modelling of inelastic behavior
9.1 Scale coupling for inelastic behavior in quasi-static problems
 9.1.1 Weak coupling: nonlinear homogenization
 9.1.2 Strong coupling micro–macro
9.2 Microstructure representation
 9.2.1 Microstructure representation by structured mesh with isoparametric finite elements
 9.2.2 Microstructure representation by structured mesh with incompatible mode elements
 9.2.3 Microstructure representation with uncertain geometry and probabilistic interpretation of size effect for dominant failure mechanism
9.3 Conclusions and remarks on current research works

References

Index